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ABSTRACT 

The objective of this work is to estimate the 
heat-source term associated with pearlitic phase 
transformation in steels. The transformation rate 
is assumed to be given in terms of Johnson-Mehl-
Avrami’s model. As a result, the present inverse 
heat conduction problem is reduced to the 
estimation of four parameters appearing in the 
formulation for this model. The Levenberg-
Marquardt method of minimization of the least-
squares norm is used for the estimation of the 
unknown parameters, by using simulated transient 
temperature measurements taken inside the 
medium. The D-optimum approach is applied for 
the design of the experiment with respect to 
different experimental variables, including the 
number and locations of sensors, the duration of 
the experiment and the heat transfer boundary 
conditions during the cooling of the specimen.  
  
NOMENCLATURE 
C volumetric heat capacity 
e slab thickness 
g heat source term 
h∞ heat transfer coefficient  
H enthalpy 
I number of transient measurements per sensor 
J sensitivity coefficients 
J sensitivity matrix 
k thermal conductivity 
K function of temperature appearing in 

Johnson-Mehl-Avrami’s model (see eq. (1)) 
M number of sensors 
n function of temperature appearing in 

Johnson-Mehl-Avrami’s model (see eq. (1)) 

Pj unknown parameters, j=1,...,4 
P  vector of unknown parameters 
S least-squares norm 
T temperature 
T∞ temperature of the cooling fluid and 

surroundings 
t time 
T vector of estimated temperatures 
tf final time 
V covariance matrix 
X normalized sensitiviy coefficients 
x spatial variable 
Y measured temperatures 
Y vector of measured temperatures 
 
Greeks 
α transformed fraction 
ε emissivity 
∆ variation 
ρ density 
σ standard-deviation of the measurements 
σr Steffan-Boltzmann constant  
 
Subscripts 
i refers to time ti, i = 1, …, I 
m refers to the sensor number, m = 1, …, M 
a refers to austenite 
p refers to pearlite 
 
 
INTRODUCTION 

Identification, optimization and control of the 
thermal conditions in industrial manufacturing 
processes are of major interest, because of their 
capital importance in quality control, as well as in 
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the reduction of product damages, energy 
consumption and production losses. In the steel 
industry, research in this area generally aims at 
manufacturing steel products with tight 
specifications for mechanical resistance and 
tenacity. One example is the appropriate selection 
of the cooling techniques to control the steel 
microstructure resultant from phase 
transformations, after large deformations at high 
temperatures. 

In this paper, we solve the inverse problem of 
estimating four parameters appearing in Johnson-
Mehl-Avrami’s model for the phase 
transformation rate in pearlitic steels [1-4]. The 
main objective of the paper is to examine the 
possibility of using transient temperature 
measurements of the material in order to estimate 
the phase transformation rate of steels that follow 
Johnson-Mehl-Avrami’s model for the phase 
transformation.  The use of simple and cheap 
temperature measurements may avoid the 
necessity of quite expensive experimental 
apparatuses to identify the phase transformation 
rate. Similar works have been performed by Jarny 
et al [5-10] in the identification and control of 
vulcanization of rubber and plastics. 

For the solution of the present parameter 
estimation problem we use the Levenberg-
Marquardt method of minimization of the least-
squares norm [11-14], with simulated temperature 
measurements. The D-optimum approach is 
applied for the design of the experiment with 
respect to different experimental variables, 
including the number and locations of sensors, the 
duration of the experiment and the heat transfer 
boundary conditions during the cooling of the 
specimen [11,14]. 
 
PHYSICAL PROBLEM AND 
MATHEMATICAL FORMULATION 

The physical problem considered here 
involves the cooling of a one-dimensional 
pearlitic steel slab of thickness 2e. The slab, 
initially at the uniform temperature T0 and in the 
austenitic phase, is cooled by convection and 
radiation at both boundaries with identical 
conditions, involving a constant heat transfer 
coefficient and a constant emissivity. Solid-solid 
phase transformations from austenite to pearlite 
take place in the steel slab as it is cooled. 
Therefore, the source term resulting from the 
phase transformation needs to be taken into 
account in the energy conservation equation. 
Because of the phase transformation, physical 

properties depend on the phase fraction. Due to 
the large temperature variations during the 
cooling process, the temperature dependence of 
the physical properties need also to be taken into 
account. 

The phase transformation kinetics can be 
experimentally determined at different constant 
temperatures, resulting in the transformation-
time-temperature (TTT) diagrams [1-3]. With 
these diagrams, the development of the isothermal 
phase transformation can be conveniently 
represented in terms of the transformed fraction, 
α, as a function of time and temperature.  

Johnson-Mehl-Avrami’s model for the 
isothermal phase transformation can be written in 
the following general form for the transformed 
fraction [2]: 

( )ntK−−= exp1α   (1) 
By assuming that the instantaneous 

transformation rate is a function of temperature 
and of the transformed fraction, that is, the 
reaction is additive [2], it is possible to determine 
the non-isothermal transformation history from 
the isothermal transformation curves. Then, we 
can write for Johnson-Mehl-Avrami’s model: 
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By taking into account the symmetry of the 
physical heat conduction problem examined in 
this paper, we can write its mathematical 
formulation as: 
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in 0 < x < e,  for t > 0 (3.a) 

( ) 0, =
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Tk α   at x = 0,  for  t > 0 (3.b) 

( ) 44, ∞∞∞∞ +=++
∂
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TThTTh
x

T
Tk rr σεσεα  

at x = e, for t > 0  (3.c) 

0TT =    for t = 0,  in 0 < x < e (3.d) 
where the source term resulting from the phase 
transformation is given by 

( ) ( ) ( )
t

T
THTg

∂
∂

∆=
αα

ρα
,

,   (4.a) 

with the initial condition 
0=α    for t = 0,  in 0 < x < e (4.b) 

The transformed fraction, α, is computed in 
this work with Johnson-Mehl-Avrami’s model 
given by equation  (1). For a pearlitic AFNOR 
XC70 steel (equivalent to ASTM-1080), the 
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following approximations can be used for K and 
n, respectively, appearing in such a model [3]:  







 −= 679.49

41210

T
Ê   (5.a) 

Tn 012.0904.12 −=    (5.b) 

For this type of pearlitic steel, the enthalpy 
change during phase-change is given by [4]: 

( ) 



++−=∆ kg

J  37997.0689.42137427 2TTTH

(6.a) 
while the thermal conductivities and specific 
heats of the austenitic and pearlitic phases are 
given respectively by [4]: 

( ) TTka 0152214.0522104.7 += 





Km
W  (6.b) 

( )  0260404.0593227.55 TTk p −= 





Km
W (6.c) 

( ) 



+= K kg

J  150.031.422 TTca   (6.d) 

( ) 



−= K kg

J  91.0621.0 TTc p   (6.e) 

The volumetric heat capacity and the thermal 
conductivity of the slab, as a function of 
temperature and of the transformed fraction, are 
obtained by using equations (6.b-e) and a 
volumetric averaging as follows: 

( ) ( ) ( ) ( )]1[, TcTcTC ap ααρα −+=  (7.a) 

( ) ( ) ( ) ( )TkTkTk ap ααα −+= 1,   (7.b) 

where ρ = 7600 kg/m3. 
 
DIRECT AND INVERSE PROBLEMS 

In the direct problem associated with the 
mathematical formulation of the physical 
problems described above, boundary and initial 
conditions, as well as the thermophysical 
properties and the source-term resulting from the 
phase transformation, are known. The objective of 
the direct problem is to determine the transient 
temperature field in the slab. 

On the other hand, associated with such 
mathematical formulation we can also envision 
the inverse problem of interest here, which is 
concerned with the identification of the phase 
transformation rate. In order to identify such 
quantity, we assume available temperature 
measurements taken inside the slab. For the 
solution of the inverse problem, we also assume 
that the boundary and initial conditions for the 
slab, as well as the thermophysical properties 
given by equations (6.a-e, 7.a,b), are known with 

high degree of accuracy. The temperature 
measurements contain errors, which are assumed 
to be additive, uncorrelated, normally distributed, 
with zero mean and constant and known standard-
deviation [11]. 

For the solution of the inverse problem, we 
assume a priori that the transformed fraction is 
given in terms of Johnson-Mehl-Avrami’s model.  
The temperature-dependent functions K and n 
appearing in equation (1) are assumed to be given 
by the following expressions, analogous to 
equations (5.a,b): 








 −= 2
1exp P

T

P
K      ( )TPPn 43 −=        (8.a,b) 

Therefore, the inverse problem of estimating 
the phase transformation rate is reduced to the 
estimation of the 4 unknown parameters Pj,  
j = 1, 2, 3 and 4 appearing in equations (8.a,b). 
These four parameters are estimated with the 
minimization of the least-squares norm.  

 
SOLUTION OF THE INVERSE PROBLEM 

The minimization of the least-squares norm 
result in a minimum variance estimator with the 
hypotheses described above for the measurement 
errors [11].  The least squares norm is written in 
vector form as 

)]([)]([)( PTYPTYP −−= TS   (9) 
where the superscript T denotes the vector 
transpose and 

])(,,)(,)([)]([ 2211 PPPPTY II
T TYTYTY

rr
L

rrrr
−−−=−

(10.a) 

The element )]([ Pii TY
rr

−  is a vector containing 
the difference between the measured and the 
estimated temperatures for the M sensors at time 
ti, that is, 

])(,,)(,)([])([ 2211 PPPP iMiMiiiiii TYTYTYTY −−−=− L
rr

 
for i = 1,…, I (10.b) 

For the minimization of the least squares 
norm (9), we apply the Levenberg-Marquardt 
Method [11-14]. The iterative procedure of such a 
method is given by: 
 

])([)(])[( 11 kTkkkkTkkk PTYJJJPP −Ω++= −+ µ  
(11) 

where µk is a positive scalar named damping 

parameter, ΩΩ
k
 is a diagonal matrix and Jk is the 

sensitivity matrix. The sensitivity matrix is 
defined as 
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STATISTICAL ANALYSIS 

By performing a statistical analysis it is 

possible to assess the accuracy of jP̂ ,  

j = 1, 2, 3 and 4, which are the values estimated 
for the unknown parameters Pj, 1, 2, 3 and 4. By 
taking into account the statistical hypotheses 
described above, the covariance matrix for the 
ordinary least-squares estimator is given by [11]: 

21)( σ−= JJV T   (13) 

where σ is the standard deviation of the 
measurement errors, which is assumed to be 
constant. We note that equation (13) is exact for 
linear estimation problems and is approximately 
used for nonlinear parameter estimation problems. 

The standard deviations for the estimated 
parameters can thus be obtained from the 
diagonal elements of V as 

jjj V=σ  for j = 1, 2, 3 and 4  (14) 

where Vjj is the jth element in the diagonal of V.  
Confidence intervals at the 99% confidence 

level for the estimated parameters can be obtained 
as 

jjjjj PPP σσ 576.2ˆ576.2ˆ +≤≤−    

for j = 1, 2, 3 and 4  (15) 
 

The joint confidence region for the estimated 
parameters is given by [11]: 

2
4

1 )ˆ()ˆ( χ≤−− − PPVPP T   (16) 

where 2
4χ  is the value of the chi-square 

distribution with 4 degrees of freedom for a given 
probability. 
 
DESIGN OF OPTIMUM EXPERIMENTS 

Optimum experiments can be designed by 
minimizing the hypervolume of the confidence 
region of the estimated parameters, in order to 
ensure minimum variance for the estimates. The 
minimization of the confidence region given by 
equation (16) can be obtained by maximizing the 
determinant of V-1, in the so-called D-optimum 
design [11,14]. Since the covariance matrix V is 
given by equation (13), we can then design 
optimum experiments by maximizing the 
determinant of the so-called Fisher’s Information 

Matrix, JJT

 
[11,14]. Therefore, optimal 

experimental variables are chosen based on the 
criterion 

JJTmax   (17) 

For cases involving a single sensor, each 
element Fr,s , r,s = 1, 2, 3 and 4, of the matrix 

JJF T≡  is given by: 
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where I is the number of measurements. 

If we take into account constraints, such as a 
large but fixed number of transient measurements 
of M sensors, we can choose to maximize the 
determinant of a normalized form of F, here 
denoted as FI [11], the elements of which are 
given by: 
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for r,s = 1, 2, 3 and 4  (19) 
where tf is the duration of the experiment. 
 
RESULTS AND DISCUSSIONS 

For the results presented below we assume the 
steel slab to be initially at the uniform 
temperature T0 = 1000 K. The half-thickness of 
the slab is taken as e = 0.050 m and the surface 
emissivity as ε = 0.21. The effects of the heat 
transfer coefficient on the solution of the inverse 
problem are examined below. 

The direct problem was solved by finite-
differences with implicit discretization. An 
iterative method was required because of the 
strong non-linear character of the problem, 
resultant from the temperature and phase 
dependent properties and from the radiation 
boundary condition at x = e. For the integration of 
the phase fraction in time a fifth-order Runge-
Kutta method was utilized.  

We note that for nonlinear estimation 
problems, such as the one under picture in this 
work, the analyses of the sensitivity coefficients 
and of the determinant of FI are not global, 
because these quantities are functions of the 
unknown parameters. Therefore, a priori 
estimated values for the parameters are required 
for the design of optimum experiments. For the 
test-cases examined in this paper, we used the 
following value for the parameters, based on the 
data for the pearlitic 1080 steel (see equations 
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5.a,b): P1 = 41210, P2 = 49.679, P3 = =12.904 and 
P4 = 0.012. 

Figures 1.a,b present the temperature and the 
transformation fraction variations, respectively, at 
selected positions in the medium, for 

KW/m10 2=∞h . We note in figure 1.b that, for 
such value of the heat transfer coefficient, the 
phase transformation is not complete in the slab 
until 300 s. Figures 2.a,b present analogous 
results to those presented in figures 1.a,b, but for 

KW/m1000 2=∞h . Differently than for 

KW/m10 2=∞h  (see figures 1.a,b), the results 
presented in figures 2.a,b show that the phase 
transformation in the slab is complete around 180 
s. The effects of the phase transformation on the 
temperature field is more noticeable for the larger 
value of the heat transfer coefficient. As 
compared to a case without phase transformation 
(energy-source set to zero), the effects of the 
phase transformation are to increase the 
temperature level in the slab and to reduce the 
cooling rate. In fact, an increase in the cooling 
rate is noticed in figure 2.a at x = 0, when the 
phase transformation finishes around 180 s. 

Figures 3.a,b present the normalized 
sensitivity coefficients with respect to the 
different parameters, for x = 0 and x = e, 

respectively, for KW/m10 2=∞h . The 
normalized sensitivity coefficients are given by: 
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(20.a-d) 
Figures 3.a,b show that the sensitivity coefficients 
are relatively large at both positions x = 0 and x = 
e and, hence, the temperature measurements are 
very sensitive to perturbations in the unknown 
parameters. On the other hand, the sensitivity 
coefficients are highly linearly dependent on both 
positions. An examination of figures 3.a.b reveals 
that, although linearly dependent, the shape of the 
sensitivity coefficients at x = 0 and at x = e are not 
the same. Similar qualitative behavior was 
noticed with the analysis of the sensitivity 

coefficients for KW/m1000 2=∞h . 
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Figure 1.a. Temperature variation in the slab for 

KW/m10 2=∞h  
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Figure 1.b. Transformation fraction variation in 

the slab for KW/m10 2=∞h  
 

The transient variation of the determinant of 
the information matrix, obtained with different 
numbers of sensors, is presented in figure 4 for 

KW/m10 2=∞h . The sensor locations are shown 
in table 1.  
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Figure 2.a. Temperature variation in the slab for 

KW/m1000 2=∞h  
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Figure 2.b. Transformation fraction variation in 

the slab for KW/m1000 2=∞h  
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Figure 3.a Sensitivity coefficients at x = 0 for 

KW/m10 2=∞h  
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Figure 3.b Sensitivity coefficients at x = e for 

KW/m10 2=∞h  
 

Table 1. Sensor locations 
Number of 

sensors 
Sensor Locations 

1 x = e 
2 x = 0 and x = e 
3 x = 0, x = e/2  and x = e 
5 x = 0, x = e/4, x = e/2,  

x = 3e/4 and x = e 
 

We note in figure 4 that the determinant of 
the information matrix is null when the 
measurements of one single sensor are used for 
the inverse analysis. This is a result of the linear 
dependency of the sensitivity coefficients, as 
illustrated in figure 3.b for x = e.  
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Figure 4. Determinant of the information matrix 

for KW/m10 2=∞h  
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As the measurements of more sensors are 
made available, the determinant of the 
information matrix increases, because the 
sensitivity coefficients at the different positions 
have different shapes, although being locally 
linearly dependent. Such a fact results in columns 
of the sensitivity matrix linearly independent, 
reducing the ill-conditioned character of the 
problem and making possible the estimation of 
the parameters with more than 1 sensor. The 
optimum duration of the experiment for 

KW/m10 2=∞h is larger than 300 s, because the 
determinant of the information matrix still 
increases at high rates at 300 s. 

Figure 5 illustrates the determinant of the 

information matrix for KW/m1000 2=∞h , for 
the same measurement positions presented in 
table 1. We note in figure 5 that, as for 

KW/m10 2=∞h , the determinant is null if one 
single sensor is used in the analysis because of 
linearly dependent sensitivity coefficients. Figure 
5 shows that the optimum duration of the 
experiment is around 150 s for the cases with 2 
and 3 sensors, and around 130 s for 5 sensors, 
when the determinant of the information matrix is 
maximum. A comparison of figures 4 and 5 
shows that the maximum values of the 

determinant for KW/m1000 2=∞h  are larger 

than for KW/m10 2=∞h , within the time range 
examined (up to 300 s). Therefore, for the 
estimation of the unknown parameters, the 
experimental conditions should be such that result 
on large heat transfer coefficients, like those 
involving boiling of the cooling fluid. The use of 
large cooling rates can result on accurate 
estimates for the unknown parameters in a fast 
experiment, as illustrated below. 

Table 2 summarizes the results obtained for 
the 4 unknown parameters, with the 
measurements of 3 sensors located in accordance 

with table 1, for KW/m10 2=∞h  and 

KW/m1000 2=∞h . Table 2 presents the 
estimated parameters as well as their 
correspondent 99% confidence intervals. The 
results shown in table 2 were obtained with 200 
simulated measurements per sensor, containing 
random errors of standard deviation 1 K. Based 
on the analysis of the determinant of the 
information matrix, the duration of the 
experiment was taken as 300 s for 

KW/m10 2=∞h  and as 150 s for 

KW/m1000 2=∞h .  Initial guesses 50 % larger 
than the exact parameters were used for the 
iterative procedure of the Levenberg-Marquardt 
method of minimization of the least-squares 
norm. In order to avoid any bias introduced by the 
random number generator used to compute the 
simulated measurements, the results presented in 
table 2 were averaged over 40 runs of the inverse 
problem solution. 
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Figure 5. Determinant of the information matrix 

for KW/m1000 2=∞h  
 
Table 2 – Parameters estimated with simulated 
measurement errors of standard-deviation 1 K 
Parameters KW/m10 2=∞h  KW/m1000 2=∞h  

P1 45225 ± 43568 42570 ± 2353 
P2 53 ± 44 51 ± 3 
P3 12 ± 8 12 ± 1 
P4 0.011 ± 0.008 0.014 ± 0.001 

 
Table 2 shows that the Levenberg-Marquardt 

method was able to estimate parameters quite 
close to the exact ones, for the two values 
examined for the heat transfer coefficient. On the 
other hand, as expected from the analysis of the 
determinant of the information matrix, the 
confidence intervals obtained with 

KW/m1000 2=∞h are much smaller than those 

obtained with KW/m10 2=∞h . In fact, quite 
accurate estimated parameters could be obtained 
even for a standard-deviation of 2 K, by using 

KW/m1000 2=∞h ; but, for such level of 
measurement error, the Levenberg-Marquardt 
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method did not reach convergence with 

KW/m10 2=∞h . 
 
CONCLUSIONS 

The main objective of this paper was to 
examine the possibility of using transient 
temperature measurements to estimate the phase-
transformation rate of pearlitic steels that follow 
Johnson-Mehl-Avrami’s model for the phase 
transformation.  The unknown transformation rate 
was parameterized, so that the inverse problem 
was reduced to the estimation of 4 unknown 
parameters. 

The design of the experimental conditions 
with the D-optimum approach revealed that 
accurate estimates can be obtained in fast 
experiments by using large heat transfer 
coefficients. Under such experimental conditions, 
accurate estimates were obtained with the 
Levenberg-Marquardt method of minimization of 
the least-squares norm, by using simulated 
temperature measurements containing random 
errors. 
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